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At present there are two theories which are used to explain the observed amplitude- 
independent mechanical damping (internal friction) in alkali halides. In the theory of 
Granato and LLicke it is assumed that the damping constant, B, results from the dislocation 
interacting with phonons, while in the theory of Robinson and Birnbaum, the assumption 
is made that the dislocation drag is caused by charged dislocations, interacting with their 
compensating charge clouds. Both these theories predict a peak in the damping at a 
frequency of ~ 10 MHz but the peak in the R-B theory is far less sharp than that in the 
G-L theory. 

In this paper the MHz results of Suzuki, Ikushima, and Aoki for room temperature and the 
MHz results of Mitchell taken at 77 and 298 K are, together with some kHz results, 
compared with the two theories. It is shown that both the theories are able to explain the 
effect of temperature and irradiation but that the theory of Granato and LL~cke does not 
fit the kHz results as well as the theory of Robinson and Birnbaum. The phonon damping 
analysis gives a change in B of a factor of 14 between the LiF specimens of Suzuki et al 
and Mitchell while for the charge cloud analysis the charges on the dislocations within the 
LiF specimen differ only by 20%. 

It is concluded that the charge cloud damping theory with a damping constant as a 
function of frequency fits the experimental results better than the present phonon damping 
theory which has a damping constant not dependent on frequency. 

1. I n t r o d u c t i o n  
When a stress is applied to a crystalline material 
the dislocations within the crystals will tend to 
move though their motion will be resisted by 
pinning points (e.g. impurities) and by a viscous 
drag force. The viscous drag force will play an 
important role in the behaviour of the material 
when it is deformed, since on deformation the 
dislocations break away from their pinning 
points and move rapidly over large distances. 
The measured plastic strain is the sum of the 
motion of all these dislocations. The distance 
they move, and therefore the plastic strain, is 
strongly dependent on the drag force resisting 
their motion. In alkali halides the drag force can 
be determined from the mechanical damping 
(internal friction) as the main contribution to the 
damping is due to the motion of dislocations 
[1-4]. When they are forced to oscillate by an 
applied stress, these dislocations can be thought 
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of as vibrating strings oscillating within a viscous 
medium and thereby absorbing acoustic energy. 
The mechanical damping parameter, ~ or Q-I, 
defined as the energy lost per cycle of vibration 
divided by 2zr times the total energy of vibration, 
is a measure of the viscous drag acting on the 
dislocations. 

In their theory, originally developed for 
amplitude-independent damping in metals, 
Granato and Liicke [5] assume that this viscous 
damping is due to the interaction of the moving 
dislocations with phonons (thermal vibrations). 
Leibfried [6] and Mason [7] have separately 
arrived at expressions for the damping constant 
which are not dependent on the frequency at 
which the dislocation is oscillating. The theory of 
Granato and Lticke with a frequency indepen- 
dent damping constant has been applied to the 
dislocation damping of alkali halides with some 
success [8]. 
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To explain the observed amplitude-indepen- 
dent damping in ionic crystals at high tempera- 
tures, Robinson and Birnbaum have developed 
another theory [3]. This is based on the fact that 
in ionic solids, dislocations can carry electrical 
charges in the form of jogs [9], and that these 
charged dislocations are surrounded by charge 
clouds formed by cation vacancies, anion 
vacancies, and divalent impurities, with a slight 
excess of point defects of one sign to compensate 
for the charge on the dislocation. When the 
charged dislocations are moved from the centre 
of their charge clouds, the charge clouds are 
pulled after them by the coulomb force. The drag 
force which is frequency dependent, has com- 
ponents which contribute to the mechanical 
damping and to the compliance defect (modulus 
defect). This theory of Robinson and Birnbaum 
has been used to explain the observed mechanical 
damping in alkali halides at room temperature 
[10]. 

The main differences between the theories of 
Granato and Lticke ( G - L ) a n d  Robinson and 
Birnbaum (R-B) are the shapes of the damping 
and compliance defect versus frequency curves 
(figs. I and 2). At low frequencies ~ (G-L) is 
proportional to frequency while ~ (R-B) is 
proportional to the logarithm of frequency. The 
compliance defect in the G-L case has a maxi- 
mum at low frequencies, remains constant until 
just before co (max) where it starts to fall to zero, 
while in the R-B theory it has a maximum at a 
frequency just below o~ (max) and minimum at a 
frequency just above m (max) and varies continu- 

h i 1 I 
loq 

I 
G 

0 

r! r 
1~66 104 'IlV :0 ~ lO 2 104 lo 6 

cu/~ ~nax.) 

Figure 1 Normal ised plots of Mechanical Damping versus 
Radial Frequency. The solid l ine is 

,~(hk)l~()k)(max) = {4Dn.,l.o(max)]'/: = + 1 }-' 
(charge cloud theory) and the dashed one 

~(h.kk)/~h.~k)(max) = 2[~/oJ(max)]/[1 + (oJ/co(max)) 2] 
(phonon theory). 

116 

E 1.o 

m ~ I  0.5 

<1 

% ~  

~ -0,5 

<1 
-1.C 

I I I I 
10 5 10 .4 1s 1(3 2 1(31 

o ~ / o J  ( m a x l  

I 

I I 
10 e 101 10 2 

Figure 2 Normalised plots of Compl iance Defect versus 
Radial Frequency. The solid line is 
( ZJShkhk/Shkkk)/( /IShkhk/ Shkhk)(max) = 

-41noJ/oJ(max)/{4[Imo/oJ(max)]2/~ 2 -I-- 1 } 7r 
(charge cloud theory) and the dashed one 
(AShkhk/Shkhk)/(/IShkhk/Shkhk)(max) = [1  ~ -  (o)/oJ(max))~] -1 
(phonon theory). 

ously with frequency. The theory of Robinson 
and Birnbaum also predicts a maximum in 
damping at iso-electric temperatures where the 
charge on the dislocation goes to zero. Another 
difference of importance is the effect of irradiation 
on the damping constant B. If  on irradiation 
the concentration of charged point defects or the 
charge on the dislocation increases, then in the 
theory of Robinson and Birnbaum the damping 
constant will increase, while for the Granato and 
Lticke theory it is invariant. 

2. Theory 
Consider the forces per unit length, acting on a 
dislocation of loop length l between pinning 
points (point defects and dislocation nodes), 
forced to vibrate with a radial frequency co, by an 
applied stress o-ran sin cot. For  longitudinal 
waves 0-mn = 0-11 while for shear waves 
0-I0_I1 = 0"12 = 0"21. If ~:W is the component of the 
displacement of the dislocation in its slip plane 
in direction w at a point y along its length, then 
the equation which needs to be satisfied for the 
equilibrium of forces acting on the dislocation is 

A --0"~" + B - C cqy2 - -  a w m n  o-ran sin cot 

. . . . .  (l) 
with the boundary conditions 

~:w (0,  t )  = ~:w ([, t )  = 0 

(dislocation fixed at pinning points or dislocation 
nodes). 
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A (aZ~w/at ~) is the force due to the inertia of 
the dislocation, A being the effective mass per 
unit length of the dislocation A ~ p ~v b ~ where 
p is the density of the material and b the magni- 
tude of Burgers vector. 

B (~(w/?t) is the viscous term; in metals B is 
due to phonon drag and is not frequency 
dependent [5-7]. In the charged dislocation 
theory [3, 11 ], B is a complex flmction which is 
frequency dependent and is given by the equa- 
tion 

B = B 0 {tan -1 (w0) + (i/2)In (1 + ~o20~)} o~ -1 
. . . . .  ( 2 )  

where 0 = the relaxation time of the charge 
cloud and B0 = the frequency independent part  
of  B. In equation 2 

Bo = (2 ~r e 2 q~/e2 k T )  ~ nj% (3) 

where e = the charge on an electron, q = the 
charge per unit length of dislocation, nj oo = the 
concentration of the charged point defect of  
type j well away from the dislocation, ~ = the 
dielectric constant, k = Boltzmann's constant, 
and T = the absolute temperature. From equa- 
tion 3 it can be seen that B o is proportional to 
the total concentration of charged point defects 
and to the square of the charge on the disloca- 
tion. 

T A  B L E I Summary of formulae for the orientation tensor 

O~whr ,  

F o r  ~n 

For %2 

F o r  ~ 

F o r  G12 

E d g e  D i s l o c a t i o n  (bmvm : O) 

~ X t  = ( v 2 b z  - -  vab2)blb~/b 8 

~ n  ~ 1 1  = (v~b8 - yah2) ~ bt~/b ~ 
=wx~ = {v~(b~ ~ - b 2 2 ) - ~  b~(v~b~ - v~bO} 

b~ /b  ~ 

~w12 ~ w 1 2  = { v a ( b ~  2 - -  b ~ ) + b n ( v u b ~  -- Ulbl)}2/b a 

Sc rew  D i s l o c a t i o n  (bm = b y e )  

~ 2 t l  ~ - -  ~lV3 

~n ~w~ = vz~(v2 2 + va 2) 

~ 1 1 2  ~ PlP3 

~212 ~ - -  P2V3 

~312 = V22 - -  Pl  2 

N o t e  - b = (bmbm) ~ a n d  v~v . . . .  1. 

C (O2~:w/Oy~) is the restoring force due to the 
curvature of the dislocation where 

C ~_ G b2/2zr (1 -- v),  
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Figure 3 Mechanical Damping ~(1~) of KCI at 298~ 
normalised to a dislocation density of 9.2 x 106 cm -2 
�9 from Suzuki etal [2]  and �9 present paper. The solid line 
is the theoretical curve for charge cloud damping while 
the dashed line is for phonon damping. 
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Figure 4 Mechanical Damping ~(H) of LiF at 298~ before 
and after an X-ray irradiation of 103 Rontgen/cm 2 (from 
Suzuki et all2]). The solid lines are theoretical curves for 
the charge cloud theory. 

G is the shear modulus and v is Poisson's ratio. 
awmn bGmn sin cot is the force per unit length 

due to the applied stress Gmn sin rot. The value 
for awmn the orientation tensor, is determined 
f rom the Peach-Koehler equation for the force 
acting on a dislocation by the stress system [12]. 
A summary of formulae for this tensor is 
contained in table I. In this table bl, b2, b3 and 
vl, v2, va are the components of  the Burgers 
vector and the normalised vector which defines 
the dislocation line. 
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2.1. Charge Cloud Damping 
The differential equation (equation 1) can be 
solved for ~w (y, t) by using a finite Fourier sine 
transform, The solution for ~w (y, t) is 

co 

4awinn baron 
- -  5 '  (2n + 1) -~ ~w(y, t) - 7rA sin" cot .&.a 

As the order of the harmonic, (2n + 1), 
increases the mechanical damping and the 
compliance defect decrease at a rate governed 
by (2n + 1) -2 so that their values for n = 1 are 

n = 0  
{ ~On 2 - oJ 2 - (Bo/2A) In (1 + cozO 2) - i (Bo/A) tan -1 600 \ 

"[w-~i "__- ~'i - - ' ( ~ n O  ~ Y ~ 2 - ~  ~_ [(-~o~o/A) t--~-~~--Oizj sinI(2n + 1)~yll] 

where (on, the undamped resonant frequency for 
the dislocation loop, is given by. 

60n = [(2n + 1)=//1 (C/Ap (5) 
The mechanical damping r can be obtained 

from this formula for ~w(y, t ) b y  computing the 
energy dissipated per unit volume in one cycle 
(A W) and dividing the answer by 27r times the 
total energy of vibration, W, where 

W = S m n o p  O 'm.  aop/2 (6) 
Smnov being the elastic compliance.* For  a 
longitudinal wave, then 

d)( , , )  - -  7r2ASl111 (~Wll awn be)" t=o N~(1) (2n + l) -z 
s n ~ 0  

[602 _ 602 _ (Bo/2A) In (1 + co202)] ~ + [(Bo/A) tan -~ 600] 2 dl 
while for a shear wave 

co 

r - 7r2AS~2r, (aw~2 aWl2 bZ)~ N~(l) (2n + l) -2 
s n ~ 0  

( (B~ tan-l(600) } 
(On z - r (Bo/2A) In (1 • to20~)] ~ + [(Bo/A ) tan -~ ~o0] 2 dl 

The compliance defect, AS~khk/S.hkr, k, is 
determined by calculating the dislocation strain 
AEhk in-phase with the total strain and dividing 
the answer by the total strain (see equation 37, 
ref. 12). The compliance defects for  the longi- 
tudinal wave and the shear wave are 

(4) 

only one ninth of those for n = 0. This means 
that only the first harmonic, n =0 ,  needs to be 
considered. Since the distribution of loop 
lengths Ns(l) is unknown in this paper it will be 
assumed that all the dislocations are of the same 
loop length, that is, the distribution of loop 
lengths is a delta function. 

In the high temperature experiments of 
Robinson and Birnbaum it was found that the 
charge cloud was almost stationary (wO > 1) 
and that [(Bo/A) In (600)] + is far greater than the 

(7) 

(8) 

radial frequency of the applied stress 
((Bo/A) In (co0) > 602). 

Using the above three assumptions then if only 
one slip system is operative the equations for the 
mechanical damping and compliance defect 
become 

ou 

(~sllll/sl11,) - s ~ ,  ~| w2ASlll~ (aw~l awn b2)~ N,(l) (2n + 1) -2 
/ = 0  

s n ~ 0  

f 6on2 - ~ - (B~ ln (l + c~ ) (9) 
[(On 2 - co 2 - (Bo/2A)-ln (1 + 09202)] 2 + [(Bo/A ) tan -~ 600] 2 dl 

and 

(/1S12s = ~ 2 A S 1 2 1 2  (Ctw12 awaz b2). Ns(1) ( 2 n  -[- 1) - 2  
~=o 

8 n=O 
( 0) 2 _  602_ (Bo/2A) in ( 1 +  60202) ) ( 1 0 )  

[60n ~ _ 602 _ (Bo/ZA) in (1 + 60202)]2 + [(Bo/A) tan-~o~0] 2 dl 
*For the pulse echo technique a displacement rather than a stress is specified for the crystal so that W = C - l r a n o p  
emneopl2 and the compliance in equations 7 and 8 should then be replaced by the inverse of the stiffness. 
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8 

I }(,,, 
[ 0 ) 0  - In 0)0]  + 

and 
8 

\ 02) 
t [0)o z - (Bo/A) In co0] ~ + [(Bo/A) rr/2]~J 

Now r  has a maximum of 

r = 16(aw~ a~,~)~ bZ(NJ)/(rP BoS~x~_~) 
. . . . .  (t3) 

when 
0) = 0)(max) = 0 -~ exp (0)o ~ A/Bo). (14) 

Equations 11 and 12 can be readily normalised 
giving 

r162 = (4 [In (0)/w(max)) ]~/~r ~ + i } -~ 
. . . . .  ( 1 5 )  

and 

( A S n ~ /  X~ ~,~ ) / ( A S ~ k /  Xh k ~  )(max) = - 
41n (-~/~(m'-~))/{4 [l~/w(-m'~x))]z/rr  ~ + 1 } rr 

. . . . .  0 6 )  

where 

(A Sh~__.~k/a~)(max) = 
(awn~ aw~k~)~, b~(N~t)/OraBShk~k) = r 

. . . . .  0 7 )  

when t,(~o/r = - z~/2. 
These two normalised equations are plotted in 

figs. 1 and 2. Fig. 1 shows the relatively slow 
change of ~(~1 with frequency. It is interesting 
to note that it is possible to normalise these 
equations so that the shapes of these curves are 
not dependent on the relative magnitudes of the 
parameters 0)0, Bo/A and co0 though, of course, 
at very high frequencies when o~ N 0)0 it is no 
longer possible to carry out the rtormalisation 
process artd this is no longer true. 

From equations 3 and 13 it can be seen that 
qS(h~)(max) is inversely proportional to the 
concentration of charged point detects and the 
square of the charge on the dislocation and is not 
affected by dislocation pinning as long as the 
total length of dislocation loops, Nil, on each 
slip plane remains unchanged. The radial 
frequency at which the maximum in damping 
occurs (equatioz~ 14) is through the expotentia~ 
very strongly dependent on the loop length 
l (0)o a l-~), the defect concentration and the 
charge on the dislocation (B0 a q~ ~ n~).  

2.2. Phonon Damping 
For phonort damping where B is not frequency" 
dependent then the displacement 

~w(y, ;) _ 4awm~ b~rnm sin 0)t ~ ,  (2n + 1) -~ 
rrA 

n = 0  

t . J - -  + sin 

and the damping and compliance defect due to 
N~ dislocations of loop length ] is 

8 

and 

8 

0)0  2 __ ~ 2  

Where dislocations are overdamped (0)0 > co) 
then 

8 
g;(gg~) ~ ~r~AShkn....._k ( a ~  awn2) ~ b~(NJ) 

__ . coB/A .. ~ \  (21) 
0)o '~ + co'~ B~/,4~j 

and 
8 

ZJ&,k,~/Sh~l~k -- ~r.ZAShk~ k (awhi..., a,,~2), b~(N)) 

0)o4 + 0)z B~/A 

r has a maximum of 

r  - 7r~BS12y2!~ w(max) 

at 
0) -- co(max) = ~o ~ A/B (24) 

while 

~(a~:~(max) w(max) = -~-----~-- ~= ~ (25) - -  ~ Shkhk B b ( N  j )  

The equations for r and AStlkh._~/Shkla....~k 
may be readily normalised giving 

4(~ / r  = 
2(w/0)(max))/[l + @/w(max)) ~1 (26) 

and 

( A S h k ~  / Shkh k ) / ( A Sh~h k/ Sh kh ~)(max) 
[1 + (co/w(max)F] -~ . (27) 
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These two equations have the same form as the 
formuli for a Debye relaxation and are shown in 
figs. 1 and 2. 

From these figures the difference in shape of 
the curves for the two theories for amplitude 
independent damping can readily be seen. At 
very low frequencies ~b(~) for the G-L theory is 
proportional to co while for the R-B theory the 
damping varies as [In (co/w(max))] -~. The com- 
pliance defect in the G-L theory decreases 
smoothly f rom a maximum at low frequencies 
to a minimum at high frequencies with most of 
the change occurring near co(max). In the R-B 
theory the compliance defect is small at low 
frequencies, increases slowly to a maximum at 
ln(co/w(max)) = -  ~v/2, decreases rapidly to 
zero at ~o = co(max) before going to a minimum 
at  In(co/co(max)) = ~/2 and approaching zero at 
higher frequencies. 

3. Experimental Procedure and Results 
In this paper experimental results f rom three 
sources will be discussed. First the published 
work of Suzuki et al [2], on LiF and KC1 in the 
frequency range of 5 to 100 MHz  will be 
presented, then the results of Mitchell [1 ] on LiF 
at frequencies of 20 to 500 MHz and lastly some 
recent results of the author on KC1 at 40, 120 and 
200 kHz. 

In 1964 Suzuki, Ikushima, and Aoki published 
the results of a series of damping experiments 
which they had carried out at room temperature 
on single crystals of LiF and KC1 in the frequency 
range of 5 to 100 MHz [2]. In their experiments 
they measured the decay of an ultrasonic signal 
generated by a 5 MHz  quartz transducer when 
this signal was passed through specimens of 
about I x 1 x 1 cm. Some of their results, for 
KC1 and LiF specimens which had been 
plastically deformed and then annealed (disloca- 
tion density ~ 107 cm-~), are shown in figs. 3 and 
4 together with the results of an X-ray irradiation 
of  10 a Rontgen/cm 2 (density of F-centres 

1016 cm -3 or ~ 10 -7) on the LiF specimen. 
These results show that the damping has a 
maximum at ~ 10 MHz (co(max) ~ l0 s radians/ 
sec) and that on irradiation the size of this 
maximum is reduced and moves to a higher 
frequency. 

In her 1965 paper, Mitchell presents some 
results for the attenuation of ultrasonic longi- 
tudinal and shear waves along a (100 )  direction. 
In this experiment the attenuation was measured 
by a conventional pulse-echo technique in the 
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Figure 5 Mechanical Damping ~(~ 4) of LiF at 298 and 77~ 
(from Mitchell [1]). The solid lines are theoretical curves 
for the charge cloud theory. 

10 to 400 MHz range before and after a slight 
plastic compression (0.05 to 0 .1~) .  At room 
temperature 10 and 20 MHz quartz transducers 
were used while at 77 and 20K a 10 MHz 
crystal was found to be satisfactory. The increase 
in attenuation observed for longitudinal waves 
was attributed to dislocations generated during 
the deformation while the lack of increase in 
attenuation for shear waves was not surprising 
since the force on dislocations in this case is 
zero. 

The mechanical damping versus frequency for 
a LiF crystal at 77 and 298 ~ K is shown in fig. 5. 
The damping has a maximum at ~ 100 MHz 
(oJ(max) ,-~ 109 sec -1) and on going from 298 to 
77~ this maximum decreases and occurs at a 
higher frequency. 

The 40, 120 and 200 kHz points shown in fig. 3 
are the damping values for a (100)  KC1 
specimen measured on a composite oscillator 
vibrating in the longitudinal mode at room 
temperature with a strain amplitude of ~ 10 .7 
(amplitude-independent region). The specimen 
was measured in the as-received state f rom 
Harshaw Chemical Co and has a dislocation 
density of ~ 3 x 106cm -~. This dislocation 
density was determined by etching the crystals 
in a 2 5 ~  concentrated solution of BaBr2 in 
methyl alcohol and counting the etch pits. The 
results plotted in fig. 3 have been normalised 
to the dislocation density of  9.2 x 106 cm -2 
reported for the high frequency results of  Suzuki 
et al. As can be seen from fig. 3 the results for 
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damping at kHz frequencies are lower than 
those at MHz frequencies. 

4. Discussion 
4,1. KCI Results 
The solid line in fig. 3 is a plot of equation 15 
(R-B theory) while the dotted line is a plot of 
equation 26 from the theory of Granato and 
Lticke. As can be seen in this figure the theoreti- 
cal R-B curve of 4'm) fits the experimental 
points better than the G-L curve which is far 
too steep to include the kHz damping results. 
The relevant results for ~.11. (max), w (max), 
dislocation density, B0, q, and B for the two 
theories is summarised in table II. 

If reasonable values are chosen for the 
parameters Sm~, b and Nsl ( S l 1 1 1  = 25.9 x 10 -1~ 
m~/N, b = 4.45A and Nsl = 9.2 x 101~ a) 
then by substituting the experimental value for 
q~(11)(max) in equation 13 one obtains B0 = 
9.5 x 104 N/m 2. For a total divalent impurity 
concentration, ~ n j  ~176 of the order of 10 -~ 
(10 ppm), then from equation 3 q becomes 
3.1 x 10 - ~  C/m which means that the disloca- 
tion is carrying 1.2 ~0 of its saturation value. This 
figure for the charge on the dislocation compares 
very favourably with the results of q/q(max) ~ 1 
to 3 ~  obtained for potassium chloride by 
Robinson using a piezoelectric technique [12]. 
It should be noted that A ~ 10 -~5 kg/m so that 
Bo/A ,-~ 102~ while co2~ 1018 see -2 con- 
firming the approximation (Bo/A)lnco0 > co~ 
used to obtain equation 11. For a dislocation loop 
length of 10~A_ (10 -v m) then coo, the resonant 
frequency of the undamped dislocation, is 
4 x 101~ sec-l giving coo ~ ~ 2 x 1021 sec -~ which 
means that COo z ~ (Bo/A) In coO. 

4.2. Effect of Irradiation on kiF 

The results of Suzuki et al before and after 
irradiation are plotted in fig. 4, the solid lines 
being the theoretical curves of the R-B theory 
(equation 13). The values for the various 
parameters are contained in table II. 

The results for the LiF specimen before 
irradiation are similar to those of the KC1 
specimen giving about the same values of Bo and 
q while B is 5.7 times that of KC1. The effect of the 
relatively light X-ray irradiation is very interest- 
ing in that it causes both a decrease in 9~(11)(max) 
and an increase in oJ(max). Using the theory of 
Granato and Liicke it is possible to explain both 
these changes as being due to an increase in the 
number of dislocation pinning points causing coo 
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to rise. On irradiation the value of B increases by 
37~o, a change which is diffficult to explain in 
terms of phonon damping though the values are 
as close as can be expected considering the 
scatter of the experimental results and they are 
consistent with the loop length of the dislocations 
being halved on irradiation. 

Comparing the results of irradiation with the 
theory of R-B it is found that the results before 
irradiation of LiF give about the same values for 
Bo and q as the KC1 specimen (table II). The 
effect of the relatively light X-ray irradiation is to 
increase B0 by a factor of  4.5. This is very 
interesting in that if the irradiation increased Bo 
without affecting ~o0, then one would expect 
oJ(max), because of its exponential dependence on 
B0 (equation 14), to change from ~ 5 x 10 v 
sec -1 to ~ 5 x 1085 sec -1. However, co(max) 
increases only slightly so that to a first approxima- 
tion it can be said that co(max) remains constant 
hence the mean loop length must decrease to 
about one half of its non-irradiated value while 
Bo increases five-fold. This five-fold increase in 
Bo may be due either to a five-fold increase in the 
total concentration of  charged defects (~  nj ~176 or 
to an increase by a factor of  two in the charge ort 
the dislocation (see equation 3 and table II). 
Since before irradiation ~ nj ~176 ~ 10 -a and after 
the low X-ray irradiation of 103 Rontgen/cm 2 the 
F-centre concentration is ~ 10 -7, it is extremely 
unlikely that the effect of irradiation is a five-fold 
increase in ~ nj ~. Instead the effect of the 
irradiation is expected to be a doubling of both 
the dislocation pinning and the dislocation 
charge. 

4.3. Effect of Tempera ture  on LiF 
The results shown in fig. 5 are from the paper of 
Mitchell and the analysed data is tabulated in 
table II. On decreasing the temperature the 
frequency at which maximum damping occurs 
increases while the magnitude of the maximum 
decreases. 

In terms of the theory of Granato and Liicke 
the effect of decreasing the temperature from 
298 to 77 K is to decrease the damping constant 
B by 11 ~ while the mean dislocation loop length 
is decreased by 33~o. Both these results are 
reasonable. The value of B for these specimens is 
~-~ of that obtained for Suzuki et al LiF. This 
large difference is difficult to understand since 
one would not expect the phonon damping to 
vary greatly from one specimen to another even 
if the impurity level did change. 
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When compared with the theory of Robinson 
and Birnbaum the effect of temperature suggests 
that on decreasing the temperature from 298 to 
77 K B0 is doubled while the loop length is 
decreased by 40 ~. The doubling of B o is in part 
due to decreasing the temperature by a factor of 
four. Because of the relatively small change in 
~o(max) it is concluded that the doubling of B 0 is 
accompanied by a 40~ decrease in the mean 
dislocation loop length. The charge on the 
dislocation on cooling is expected to increase by 
40 ~ while due to precipitation the total concen- 
tration of charged defects (_Y nj ~) is halved. It is 
important to note that at room temperature the 
charge on the dislocations for the Mitchell and 
unirradiated Suzuki et al LiF specimens is 0.35 
and 0.29~ of saturation, a result which gives 
support to the theory of charge cloud damping 

5. C o n c l u s i o n s  

All the damping results presented in this paper 
have been shown to be consistent with the theory 
of damping due to charged dislocations oscillat- 
ing within their practically immobile (co0 > 1) 
charge clouds. The calculated results ofq/q(max) 
~ 0.2 to 1.2 ~ for the charge on the dislocations 
are reasonable and are in agreement with the 
results of more direct measurements. The 
increase in Bo due to irradiation can be explained 
by an increase in either the concentration of 
charged defects or charge on the dislocation. 
From the change in Bo and the small change in 
.oJ(max) it is concluded that most likely both the 
dislocation pinning and dislocation charge are 
doubled by the X-ray irradiation while there is 
little change in the concentration of charge 
defects well away from the dislocation. The 
conclusion suggests that defects are more easily 
formed at the dislocations than in the rest of the 
solid. The results for a decrease in temperature 
from 298 to 77 K are consistent with a 40~ 
increase in the charge on the dislocation together 
with a 40 ~ decrease in the mean dislocation loop 
length and 75~ of the total charged point 
defects being precipitated out. The close agree- 
ment of the values of the charge on the disloca- 
tions for the LiF specimens of Mitchell and 
Suzuki et al confirm the charge cloud damping 
theory. 

For the phonon damping theory the kHz 
damping results are too high when compared 

with the results in the MHz region. The effect of 
irradiation in terms of this theory is to decrease 
the mean loop length to one half of its original 
value while decreasing the temperature from 298 
to 77 K causes the damping constant B to 
decrease by 11 ~ and the dislocation loop length 
to drop by ,,~ 40 ~. The damping constant for 
the Suzuki et al specimen is found to be fourteen 
times that for Mitchells suggesting that the 
phonon damping theory is not applicable to 
alkali halides at least not in its present form with 
a frequency independent damping constant. 

The damping experiments discussed in this 
paper indicate that in alkali halides the motion of 
dislocations is damped by the interaction with 
surrounding charge clouds. To distinguish more 
clearly between phonon damping and charge 
cloud damping it is necessary to measure the 
charge on the dislocation when the specimen is 
irradiated or its temperature is changed. This 
may be done by measuring the piezoelectric 
effect and mechanical damping [12]. Since the 
compliance defect as a function of frequency is 
quite different for the two forms of damping then 
another worthwhile experiment would be measur- 
ing the mechanical damping and compliance 
defect over a range of frequencies. 
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